If it's not what You are looking for type in the equation solver your own equation and let us solve it.
55t-5t^2=151
We move all terms to the left:
55t-5t^2-(151)=0
a = -5; b = 55; c = -151;
Δ = b2-4ac
Δ = 552-4·(-5)·(-151)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(55)-\sqrt{5}}{2*-5}=\frac{-55-\sqrt{5}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(55)+\sqrt{5}}{2*-5}=\frac{-55+\sqrt{5}}{-10} $
| -37=4y+7 | | 13(x-5)=2(x+2) | | 27=-4z-5 | | (4x-8)(2x-6)=0 | | -6c+6=60 | | F(x)=x2-84x+5000 | | 8+w=5w | | -23=-2p-43 | | 33/22+3y/5=7y/10+15 | | x^2+2011x+2010=0 | | 147+2h=1051 | | 9x+28=45 | | 23x+32=45 | | P=30+2x | | 9x-28=45 | | (9b−1)(9b+1)=0 | | 296=-3n+5n^ | | 3^(x+3)+9=14 | | X=7x+30 | | (9x-2)+40+180-(20x+5)=180 | | 8(2x-8)+4=24 | | 2(9a-8)=-22 | | 18=6r-6 | | 2(x+4)=-22 | | 10+2x-8=180 | | 3x*4=25 | | 10+2x-8+x=180 | | 11+6x-14=1/5(15x-5) | | 3x-5+2x=4-3x+9 | | 180-2x+15+45+x=180 | | 2(x-10)=6x+4 | | (X-3)(x+3)=13 |